
A Build Server for
Model-Driven Engineering

Henrik Steudel, Regina Hebig, and Holger Giese
Hasso Plattner Institute at the University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
{forename.surname}@hpi.uni-potsdam.de

ABSTRACT
Model-driven engineering (MDE) is more and more used in
collaborative settings. Therefore, the usage of build servers
to gain early integration of different system parts is desir-
able. Current build server technologies only consider fully
automated operations. Further, the availability of all de-
scribed artifacts is necessary for a correct run. However, in
MDE manual activities can occur in between automated op-
erations, which also prevents that all necessary artifacts are
already available when the build starts. Therefore, state of
the art build techniques are not sufficient to support MDE
development. In this paper, we present a build server proto-
type which is designed to fit the needs of development with
multiple paradigms and languages.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

Keywords
Model-driven engineering, build server, integration process

1. INTRODUCTION
Nowadays, model-driven engineering is used to tackle the
increasing complexity of software. Models and code are em-
ployed to represent different levels of abstraction or differ-
ent aspects of a system following different paradigms. Model
transformations or other model operations further automate
some of the required development steps and permit to com-
bine the multi-paradigm model into a consistent whole.

In code-centric development build servers provide early feed-
back on the integration process. They execute operations to
transform development artifacts to an executable or deploy-
able product. Automatic verification is employed to check
the product for specified semantic properties.

In model-driven engineering (MDE) multiple languages are
used to create a multi-paradigm model of the developed sys-
tem. Thereby, models are combined to describe different
system aspects or are used on different levels of abstrac-
tion. Therefore, content is propagated via transformations
between artifacts. This can require the mixed application of
manual and automated steps during implementation. Exam-
ples are described in several studies [6, 8, 9, 14, 11]. Such
MDE settings are used in multiple projects [8].

Classical build approaches for code-centric development in-
clude only fully automated steps, e.g. compiling source code

or creating a deployable product. These approaches only
work if all artifacts described in the build script are pro-
vided. Further, in classical build servers the outcome of
verification and validation (V&V) activities has either no
influence or leads to a complete break of the build. Thus,
builds are not executed partially.

However, in MDE also manual operations have to be ap-
plied in between different automated operations. A build
approach needs to be able to handle these manual opera-
tions. Due to manual operations, it is further possible that
artifacts are missing during build. Finally, several V&V ac-
tivities might work on results of preceding manual activities.
It is desirable to use such verifications as early as possible to
prevent the application of other expensive, possibly manual,
activities. Thus, an integration of V&V activities within the
build script is necessary.

Subsuming, current build approaches do not support MDE
needs. Languages for build scripts do not allow capturing
manual activities or integrated V&V activities. In addition,
there are no explicit mechanisms to handle manual involve-
ment, deal with the fact that manual activities require much
more time than automated ones, or decide whether manually
contributed artifacts are outdated.

In this paper, we present a build server prototype that pro-
vides support for MDE specific requirements. We intro-
duce an integration meta model that allows specifying build
scripts with manual and V&V operations. Further, we devel-
oped concepts and a build process that can handle situations
with missing artifacts or failing integrated verifications.

The paper is structured as follows. In the next section we
discuss MDE specific requirements on a build server in de-
tail. Section 3 introduces the build server with the integra-
tion meta model for the definition of build scripts. Further
the build process is explained and we discuss how the re-
quirements introduced in Section 2 are fulfilled. In Section
4 we discuss related work and conclude in Section 5.

2. REQUIREMENTS
The above described property of MDE, i.e. the mixture of
manual and automated activities, leads to special needs for
a build server. In the following, we introduce these needs
and discuss that some of them might be also relevant for
non-MDE projects. However, we will show that the mixture
of manual and automated activities in MDE makes these
needs much more pressing.

Handling Manual Operations. The usage of outdated ar-
tifacts during the build process should be prevented. There-
fore, a build server has to be able to identify, whether manual
operations have to be executed to update an artifact. Cap-
turing manual activities in the build script is a precondition
for such an analysis. Manual activities need much more
time than automated ones, since they are constrained by
the availability of human resources and are often not trivial.
Therefore, a build server for MDE needs to be able to deal
with missing artifacts that will result from manual activities.
Further, a build server needs to provide resulting artifacts of
a build, so that they can be used during manual activities.
Finally, an approach has to notify users about the need to
execute manual steps. To prevent users from working with
outdated artifacts, they should be notified when input arti-
facts for manual activities are changed (e.g. by automated
operations executed during a build). However, in terms of
usability, the notifications should only be sent if necessary
and not automatically with each build.

Integrated V&V Operations. For both MDE- and non-
MDE projects it is, especially for troubleshooting, useful to
identify errors before they are propagated via transforma-
tions to other artifacts. However, there is a pressing need
for this ability in MDE, when potentially erroneous artifacts
might be used for performing expensive manual activities.
Further, checks may be necessary as preconditions for an
automated activity to ensure correct behavior. However,
verification that is performed at the start of an MDE build
cannot capture all errors, when design and implementation
decisions are made in later manual steps. To enable trade-
offs between these needs, we identify the requirement that
a build approach should allow to specify and execute verifi-
cation and validation operations on artifacts produced and
consumed in the build script.

Lightweight Build Script and Partial Builds. When a
build has to handles manual operations, as in MDE, it is im-
portant to discuss whether users using the build server are
restricted in their behavior. A build server might enforce
a specific sequence of operations or might not be able to
handle spontaneous iterations of one or more manual activi-
ties. A build script language and execution semantic should
support the definition of lightweight build scripts that
allow maximum freedom of the execution order. The goal is
a reduction to technically necessary sequences, as they are
determined by production and consumption of artifacts.

Similarly, a build language should not require the user to
define in each build script appropriate alternative behavior
for handling failing verifications and situations with missing
artifacts (e.g. due to necessary manual activities). Such be-
havior should be built-in into the execution semantic of the
build script. A build server should not simply abort a build
with the first occurring problem, skipping operations that
are ready to be executed. Instead, operations should be ex-
ecuted whenever possible, since in MDE operation products
can be prerequisite for further manual operations that fol-
low on automated operations. A controlled partial build,
as far as it is possible with the given and successfully veri-
fied artifacts, should be performed. Partial builds can also
be interesting for builds in non-MDE settings, e.g. produced
partial results might be used for troubleshooting.

3. A BUILD SERVER FOR MDE
The build server’s main task is the execution of a build script
on artifacts (i.e. models or code) that are stored within a
version control system (VCS). The artifacts created during
the build are committed to the VCS, where they can be
checked out by users to be used for manual activities. Foun-
dation for handling described MDE needs is the design of
build script language and build process. The build script is
represented in form of an integration model, that specifies
an object flow of artifact roles between manual and auto-
mated activities. Artifact roles allow to formulate the build
script independent of a specific project and serve as place-
holders for artifacts. During the project artifacts committed
to the VCS (either by users or as result of a build execution)
are mapped to artifact roles. Additionally, verifications can
be specified in the build script between artifacts to prevent
the usage of incorrect artifacts in following operations, or
between artifacts and operations as precondition for the ap-
plication of operations. While automated activities are di-
rectly executed during the build whenever possible, manual
activities cannot be executed during a build. Here the build
server provides a messaging concept, that is utilized to pro-
vide users with information in case manual activities have to
be executed. When results are committed to the VCS and
mapped to the appropriate artifact roles, the build server
can use them in the following builds. We will introduce the
architecture of the build server, followed by the introduction
of the integration meta model that is used for the specifica-
tion of build scripts, and the description of the build process.

3.1 System Design
This section outlines relevant build server components of
our prototype as depicted in Figure 1. The Build Manager
is the central component of the build server. It integrates all
functionality needed for the execution of builds. Therefore
it provides access to the VCS and third-party technologies.
Additionally, the Build Manager contains the current build
script instance. The communication components establish a
communication protocol to enable client-server messaging.
This messaging is embedded in the development environ-
ment of the client. The build server sends notifications to
clients and receives artifact mappings from clients. Tech-
nology Adapter plugins adapt external technologies for ac-
tual execution of verifications and model operations. Each
adapter claims responsibility for a technology which can be
referenced from build scripts. The set of supported tech-
nologies can be extended by supplying additional adapter
plugins. Build Jobs are part of the Build Manager and rep-
resent specific build execution instances. Every job operates
on the build model, a copy of the current build script from
Build Manager. Also it uses the Build Manager to access
the VCS and technology adapters. Basic job configuration
requires an assigned build script and a build trigger. Trig-
gers may either specify periodical or on-demand execution,
e.g. a build is requested by a user.

3.2 Integration Model
The integration meta model (shown in Figure 3) consists of
three parts. The main part (illustrated with black lettering)
allows the specification of the build script. This part of the
integration model is independent of a specific project and
can be reused for equal MDE settings. The second part of
the integration meta model (illustrated with blue lettering)

«Singleton»
VCS

BuildJob

+buildModel: IntegrationModel

+build(): void
«Singleton»

BuildManager

+buildScript: IntegrationModel

+execute(o: Operation, map: (ArtifactRole, Artifact)[]): (ArtifactRole, Artifact)[]
+verify(v: Verification, map: (ArtifactRole, Artifact)[]): Boolean
+exists(a: ArtifactRole): Boolean
+getVCSReference(a: ArtifactRole): UUID
+commitToVCS(a: Artifact)
+copyFromVCS(a: ArtifactRole): Artifact

0..n
builds

0..1

previousBuild

1

VCS

«Singleton»
ServerCommunication

+sendNotification(o: Operation)
+receiveMapping(ar: ArtifactRole, a:Artifact)

1

com

TechnologyAdapter

technology: UUID

+execute(specification: UUID, map: (Parameter, Artifact)[]): (Parameter, Artifact)[]
+verify(specification: UUID, map: (Parameter, Artifact)[]): Boolean

1..n
adapter

Artifacts

ID: UUID

0..n

localArtifacts

«Singleton»
ClientCommunication

+sendMapping(ar: ArtifactRole, a: Artifact)
+receiveNotification(o: Operation)

«uses»

Client

«uses»

Server

+isUserModified(a: ArtifactRole): Boolean

Figure 1: Design of the build server

allows to specify the mapping of project-specific artifacts to
project-independent artifact roles in the build script part.
Finally, the integration meta model allows ‘process annota-
tions’ (illustrated with gray lettering) that are specific for
each build job and only used within the build model copies.
To illustrate the meta model we use the example of a fac-
tory production modeling process taken from [11]. Starting
from initial structural (SDL block diagrams) and behavioral
specifications (Storycharts) the process combines automated
and manual model operations to derive a compile-ready code
base. Figure 2 shows a possible integration model for that
process, which is augmented with sample verifications.

3.2.1 Build Script
The meta model basically contains three types of elements:
artifact roles, verifications, and operations. Initial artifacts,
like the example’s blockdiagram and storycharts, constitute
the entry point for build processing. An operation holds
two UUIDs to reference its specification (i.e. the implemen-
tation) and the technology, which can be used to execute this
operation (e.g. ATL modules). Further an operation can be
marked as manual, e.g. operation ‘extended by custom ele-
ments’. In the example’s illustration automated operations
are decorated with a ‘gears’ symbol, whereas manual oper-
ations bear a ‘persona’ symbol. Finally, an operation holds
sets of input, output, or in-output parameters, each referenc-
ing an artifact role. Thus, the set of produced and consumed
artifacts can be specified for an operation. In-output param-
eters can be used to indicate that an operation respects a
former output during reapplication.

The integration model provides a set of verification types.
Similar to operations, a verification holds two UUIDs to ref-
erence its specification (e.g. a ruleset) and the technology,
which is employed to execute the verification. Further, a
verification references all used artifacts. There are two pos-
sible targets for a fail of a verification. Either artifacts are
not used further during the build or an activity is not used
during the build. In addition, a verification can either focus
on the correctness of artifacts (concerning their syntax, se-
mantic, and compatibility) or on the correct execution of an
activity. Verifications that have the consequence, that a sub-
set of the used artifacts (referenced as impacted artifacts) is
not employed as input for operations during the build, are
modeled as artifact verifications. Verifications that focus on
the correctness of artifacts and target the usage of artifacts
during the build are horizontal consistency checks and solo
artifact checks. Horizontal consistency is defined on a set of

artifacts that mutually do not form a source-result relation-
ship [13], e.g. ‘chart per process’ checks whether there exists
a story chart for each process in the block diagram. Solo ar-
tifact checks are similar to horizontal consistency checks,
but only defined on a single artifact, e.g. ‘activities speci-
fied’ in Figure 2 that checks if all activities contain a behav-
ior specification. Verifications that focus on the correctness
of artifacts and target an activity are postconditions. Arti-
facts used in postconditions are result of the same operation,
e.g. ‘methods specified’ checks whether code fragments were
assigned to appropriate methods. Since an operation is al-
ready executed, when a postcondition is performed, the con-
sequence of a fail is that the checked artifacts are not used
further. In these three cases all used artifacts are also im-
pacted artifacts, e.g. if ‘Sourcecode’ fails the ‘methods spec-
ified’ check, it will not be used further. Verifications that
focus on the correct execution of an activity and target the
usage of artifacts during the build are vertical consistency
checks. Vertical consistency checks whether one impacted
artifact a is consistent with one or more ancestor artifacts,
i.e. artifacts that are direct or indirect input for operations
creating a. ‘Class per process’ checks, whether for each pro-
cess in ‘SDL block diagram’ a class in the ‘extended class
diagram’ exists. Only then ‘extended class diagram’ can be
used to execute operation ‘generate class stubs’. Finally, ver-
ifications that focus on the correct execution of an activity
and target an activity are preconditions. Used artifacts of a
precondition are input of the impacted operation. If a pre-
condition fails, the impacted operation will not be executed
during the build. For example, the precondition ‘match’ in
Figure 2 checks, whether the ‘state table implementations’
can be matched to corresponding ‘class stubs’. Only then
the following operation is executed.

3.2.2 Artifact Mapping
The model’s second purpose covers mappings between the
model’s logical elements and their representation in the repos-
itory. Artifact roles are assigned to development artifacts
via artifact property. A mapping is not necessarily given for
each artifact role, as artifacts might not yet be created.

3.2.3 Processing annotations
Processing annotations are determined at build time and
gather information about reusability of previous build re-
sults as well as an execution status. Artifact role defines
properties reusable and reused if the artifact is eligible for
reuse, respectively if it was actually reused during the build.
The property user-modified remarks if a new version of the

SDL Block

Diagram

UML Class

Diagram

Extended

Class Diagram

Combine

Structural and

Behavioural Code

Storycharts

Sourcecode

Skeleton

Add process

init code

Sourcecode

<<vc>>

Class per

process

<<hc>>

Chart per

process

<<pre>>

match

<<post>>

Methods

specified

<<solo>>

activities

specified

Generate

StateTables

Statetable

ImplementationsClass stubs

Generate Class

stubs

Extend by

custom elements

UML Class-

diagram

Generation

Figure 2: Factory Example

Untreated

Pending

Pending_

Invalid
Invalid

Valid

Figure 4: Verification States of an Artifact

artifact was committed to the VCS since the previous build
started (excluding the previous build’s commits). Opera-
tions and verifications define an executed property which is
set after execution to avoid redundant runs. The outcome
of a verification is stored in result property.

The states of an artifact role (see Figure 4) reflect the cur-
rent verification status. The default state untreated indi-
cates that an artifact role is either not mapped to an artifact
within the build or it is not yet decided, whether the artifact
will be (re-)used during the build. Artifact roles that are in
state pending or pending invalid are subject to the appli-
cation of verifications. In case of pending invalid at least
one verification that influences the validity of the artifact
role already failed. Nonetheless, remaining verifications on
a pending invalid artifact still have to be executed, since
they can affect other artifacts, too. For artifact roles that
are in state invalid no further validations have to be applied
and at least one verification failed that influences the valid-
ity of the artifact role. Finally, the state valid indicates
that the artifact role can be used as input for operations
during the build. Similar to artifact roles, operations pass
through the same states (except untreated) to determine
whether they can be applied during the build.

3.3 Build Process
In this section we present the overall build processing, fol-
lowed by explanations regarding incremental builds and man-
ual activity handling. The build process is started by a con-
figured build trigger. At this time a copy of the build script
in Build Manager is supplied to the build job for interpreta-
tion and storage of processing annotations (build model).

3.3.1 Overall Build Process
The build process starts with an initialization phase, pro-
ceeds to actual build execution phase and afterwards closes
the build. Build initialization first creates a local build en-
vironment where all current versions of mapped artifacts
are copied to from VCS. Artifact roles now point to arti-
facts in the local pool instead of the VCS. All artifacts that
are determined for potential regeneration are locked in the
VCS. This prevents that a user can commit changes to arti-
facts that might be overwritten by the build job’s commit.
Further, states of initial artifact roles are set to pending.
The build execution itself loops through the following se-
quence of actions. First, solo artifact checks and horizontal
consistency checks are performed on pending artifact roles.
These verifications might require not yet available artifacts
and, therefore, must be postponed. However, if all verifica-
tions defined on an artifact could be performed successfully,
the artifact is deemed valid. Valid artifacts in turn enable
execution of model operations. Thus, the next build step in-
spects operations for valid input artifacts and performs pre-
condition verifications. Thereby, any in-output parameter’s
state is not relevant. On successful evaluation the operation
is eligible for application. Before the operation execution is
triggered, we check whether previously created output arti-
facts can be reused. If this is not the case, the operation has
to be executed. Therefore, automated operations are dele-
gated to the corresponding technology adapter. In contrast,
for manual operations a notification is sent to the users. Ei-
ther way it is assumed that generated artifacts are mapped
to output artifact roles by the executor. The states of the
output artifacts are set to pending. Afterwards, postcondi-
tions and vertical consistency checks are performed. At this
point the loop starts over. New artifacts may enable further
verifications and subsequent model operations. The loop is
exited when last iteration did not contribute any output ar-
tifact to the pool of artifacts. This is either the case if all
defined operations actually have been executed (complete
build). Alternatively, remaining operations lack valid in-
put artifacts or failed a precondition check (partial build).
Subsuming, the build process has carried out all eligible ver-
ifications and model operations. It terminates gracefully de-
spite possible incomplete artifact mappings or verification
failures. After termination every generated artifact is made
available to the users. Hence, on build closure these artifacts
are committed to VCS. Finally, the build job is prepared to
be used for reusability determination in the next build job.
Therefore, relevant artifact mappings in the current build
model are adapted to reference the artifacts now located in
the VCS. For artifacts that are committed the first time, a
mapping is added to the Build Manager’s build script.

3.3.2 Incremental Builds and Reusability
The build process pursues an incremental approach to min-
imize the amount of required verification and operation ex-
ecutions. We evaluate whether results from a previous ex-

«Enumeration»
States

UNTREATED
PENDING
PENDING_INVALID
VALID
INVALID

Operation

+manual: Boolean
+specification: UUID
+technology: UUID
+executed: Boolean

+sources(): ArtifactRole[]
+targets(): ArtifactRole[]

Verification

+specification: UUID
+technology: UUID
+result: Boolean
+executed: Boolean

ArtifactRole

+artifact: UUID
+usermodified: Boolean
+reuseable: Boolean
+reused: Boolean

1..* artifacts

Precondition

1
impactedOperation

IntegrationModel
allArtifacts1..*
initialArtifacts

Element

Parameter
1..* input
1..* output1 artifact

1..*

allVerifications

ArtifactVerification

1..*

impactedArtifacts

SoloArtifactHorizontalConsistency VerticalConsistencyPostcondition

1..*allOperations

+uuid: UUID
+name: String

in-output1..*

+state: State

+state: State

Figure 3: Meta model of the integration model

ecution of an operation can be reused, instead of executing
this operation again. This is possible if all input artifacts
of the operation are already reused and output artifacts are
mapped in the previous build. During initialization the build
process detects artifacts that are modified by users since the
last build started. Thereby, it is considered when artifacts
were updated in the repository. For these artifacts the cor-
responding artifact roles are marked as user-modified. In
case an input artifact or one of its ancestor artifacts is user-
modified the operation’s results cannot be reused. If a ver-
ification exclusively covers reused artifacts, it is possible to
reuse the verification’s result from previous build.

Above is described how information from the previous build
can be employed for reuse. Therefore, the adaptation of ar-
tifact mappings during build closure have to be done in a
specific manner. There are two kinds of artifact roles for
which mappings to corresponding artifacts in VCS are set.
First, there are the artifact roles that are not in the state un-
treated. For example, these are artifacts that were reused
or successfully generated and subsequently committed. Sec-
ond, there are artifacts that remained in state untreated,
but are marked as reusable. The property reusable is deter-
mined statically at the start of a build and indicates that no
ancestor artifacts have been user-modified. For reasons like
failing horizontal checks the partial build has stopped be-
fore the producing operation was considered for execution.
Nevertheless, the artifact is still eligible for reuse. However,
there are artifact roles which must not reference the artifact
in VCS any longer. These artifacts also remained in state
untreated at build closure but are not marked as reusable.
So, ancestor artifacts were user-modified but the current ar-
tifact is not yet updated based on this new input.

3.3.3 Manual Activity Handling
As previously noted, a manual operation has to be per-
formed whenever its input artifacts are modified. The build
job dispatches notifications to users, containing the task and
involved source artifacts. As the current build job has not
received any results yet, it simply treats the output artifact
roles as missing artifacts. Any notified user can carry out
the operation and commit the resulting - new or updated -
artifacts back to VCS. In case of new artifacts the user is
also required to create the mappings to corresponding tar-
get artifact roles. Thus, these artifacts are introduced as
user-modified artifacts and can be used in subsequent build

jobs. The build server sends notifications whenever modi-
fied input for manual operations is detected. On that basis
we can make the reasonable assumption that users consider
latest input artifacts when committing resulting artifacts.
This also applies in the case that source and target artifacts
of the same operation are user-modified.

3.4 Discussion
Following, we discuss how the above presented build ap-
proach fulfills the requirements listed in Section 2. The inte-
gration model is designed to specify usage of manual and au-
tomated operations. Missing artifacts don’t prevent an exe-
cution of the build, due to the partial build concept. Thus,
the user is always provided with all artifacts that can be built
successfully. Manual operations are handled by sending no-
tifications to the user. Thereby, he is always notified about
the current version of the input artifacts, but gets no obtru-
sive repeated requested if nothing changed. The integration
meta model further allows to specify the applications of inte-
grated V&V operations. We associate different verification
types with a built-in semantic for consequences in case of
failures. This enables the build process to decide which op-
erations can be meaningfully executed. In consequence users
are not asked to perform manual activities if verifications on
input artifacts fail. Finally, the integration meta model is
designed for build scripts to be as lightweight as possible.
We implement a solution where no control flow but only the
object-flow is defined, i.e. it is specified which artifacts are
consumed and produced during operations. This declarative
way of definition allows the build approach to only minimally
restrict the order of manual operations. The build process
makes no assumptions about when or in which order up-
dated versions of artifacts can occur in the VCS. Therefore,
the user is free to perform manual activities in any order
and the build server can deal with spontaneous iterations.

4. RELATED WORK
The actual expressiveness of build servers like Hudson1 or
Jenkins2 bases on the used build scripts. Languages for spec-
ifying build behavior are Make [5], ANT [1] and Modeling
Workflow Engine 2 (MWE2) [2]. Make and ANT are rather
lightweight. These technologies provide no support for inte-
grated V&V operations, like preconditions for the execution
of compilation steps. Maven 2 [7] scripts define combinations

1http://hudson-ci.org/
2http://jenkins-ci.org/

of plugins supporting different technologies and are bound
to a build lifecycle. The default lifecycle mixes operation
execution and verification phases. Although they are very
popular, none of these languages was designed to explicitly
deal with manual operations. Finally, the above mentioned
build languages support no partial builds. ANT processes
defined operations independent from verification results or
missing artifacts. In Make the build fails completely in case
of missing artifacts. MWE may be used to explicitly define
alternative behavior on failing verifications. This leads to
less lightweight build scripts.

Languages like MoScript [10], MoTCof [15], or Epsilon [12],
provide lightweight concepts for explicit composition and
automated execution of model operations. However, sup-
port for integrated V&V operations is rather rare. Epsilon
[12] is an example where verifications can be explicitly mod-
eled as part of the composition. None of these approaches
provides support for handling of manual operations. Also
partial execution is not supported, e.g. a verification that
fails in Epsilon leads to full abort of the execution.

Software processes by nature have to deal with manual tasks.
In context of MDE, some attempts aim at providing support
for automated execution of software processes. An example
is the UML4SPM language [4, 3], which allows to model
manual activities as part of the executed process. Commu-
nication and exchange of results between activities is sup-
ported. Unfortunately, it is not discussed in [4, 3] how the
system reacts to long waiting times during the execution of
manual activities. Since UML4SPM was not created with
the intention to support builds, it is not surprising that the
authors describe no concept of a partial execution. While
verifications in the process can be modeled as activities,
consequences of failing verifications have to be modeled ex-
plicitly as alternative process paths. As a process language
UML4SPM can be used to recreate partial builds, which
leads to more complex processes. Thus, UML4SPM provides
no lightweight language for build scripts. Subsuming, com-
bining automation and manual involvement is only in focus
of UML4SPM [4]. Partial builds and integrated V&V oper-
ations have no built-in support in the discussed approaches.

5. CONCLUSION AND FUTURE WORK
In this paper, we discussed special requirements on build
servers for the treatment of MDE approaches. Thereby, it
was identified that a build server requires support for manual
operations, integrated V&V operations, and partial build
runs. We presented an integration meta model that allows to
create build scripts for MDE and introduced a prototypical
build server. Further, we discussed how our approach fulfills
the identified requirements on a build server for MDE.

In future work we will allow also manual verifications. Fur-
ther, the build server might be used for statistic analysis in
case the same integration model is reused in several projects.
For example, additional verification might be formulated for
artifact roles that turn out to be subject to frequent rework.

Acknowledgments
We thank Thomas Beyhl for his support during the imple-
mentation of the prototype.

6. REFERENCES
[1] S. Bailliez, N. Barozzi, and J. Bergeron. Apache Ant

User Manual. The Apache Software Foundation, 2003.

[2] H. Behrens et al. Xtext User Guide, chapter 6. 2010.

[3] R. Bendraou, M. Gervais, and X. Blanc. UML4SPM:
A UML2.0-Based Metamodel for Software Process
Modelling. In L. Briand and C. Williams, editors,
Model Driven Engineering Languages and Systems,
volume 3713 of LNCS, pages 17–38. Springer, 2005.

[4] R. Bendraou, J.-M. Jézéquel, and F. Fleurey.
Achieving process modeling and execution through the
combination of aspect and model-driven engineering
approaches. Journal of Software Maintenance and
Evolution: Research and Practice, 2010.

[5] S. I. Feldman. Make – a program for maintaining
computer programs. Software: Practice and
Experience, 9(4):255–265, 1979.

[6] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and
J.-M. Jézéquel. Model-Driven Engineering for Software
Migration in a Large Industrial Context. In G. Engels,
B. Opdyke, D. Schmidt, and F. Weil, editors, Model
Driven Engineering Languages and Systems, volume
4735 of LNCS, pages 482–497. Springer, 2007.

[7] T. A. S. Foundation. Apache Maven User Guide. The
Apache Software Foundation, 2011.

[8] R. Hebig and H. Giese. MDE Settings in SAP. A
Descriptive Field Study. Technical report,
Hasso-Plattner Institut, University of Potsdam, 2012.

[9] J. Johannes and U. Assmann. Concern-Based
(de)composition of Model-Driven Software
Development Processes. In D. Petriu, N. Rouquette,
and Ø. Haugen, editors, Model Driven Engineering
Languages and Systems, LNCS. Springer, 2010.

[10] W. Kling, F. Jouault, D. Wagelaar, M. Brambilla, and
J. Cabot. MoScript: A DSL for querying and
manipulating model repositories. In Software
Language Engineering (SLE), Braga, Portugal, 2011.

[11] H. J. Köhler, U. A. Nickel, J. Niere, and A. Zündorf.
Integrating UML Diagrams for Production Control
Systems. In Proc. of the 22nd International
Conference on Software Engineering (ICSE),
Limerick, Ireland, pages 241–251. ACM Press, 2000.

[12] D. Kolovos, R. Paige, and F. Polack. A Framework for
Composing Modular and Interoperable Model
Management Tasks. In MDTPI workshop, EC-MDA,
Berlin, Germany, June 2008.

[13] J. Küster and G. Engels. Consistency Management
within Model-Based Object-Oriented Development of
Components. In Proceedings of the conference on
Formal Methods for Components and Objects (FMCO
2003), Leiden, The Netherlands, pages 157–176.
Springer, October 2004.

[14] B. Roussev and J. Wu. Transforming use case models
to class models and OCL-specifications. Int. J.
Comput. Appl., 29(1):59–69, January 2007.

[15] A. Seibel, R. Hebig, S. Neumann, and H. Giese. A
Dedicated Language for Context Composition and
Execution of True Black-Box Model Transformations.
In 4th International Conference on Software Language
Engineering (SLE 2011) , Braga, Portugal, July 2011.

